• <dd id="6umys"><source id="6umys"></source></dd>
  • <nav id="6umys"></nav><center id="6umys"><table id="6umys"></table></center>
  • 打造功能樹脂、助劑、新材料整合應用技術平臺
    熱線電話:150 0765 1114(微信同號) / 189 2925 5137(微信同號) | English
    您當前位置:網站首頁>新聞動態>今日頭條

    UV涂層附著力解析

    2024-01-04

      UV涂層與基材之間的附著力是評判漆膜物性優劣的首要前提條件,在涂料配方設計的過程中,附著力的解決也就決定了材料選型與協調的方向。

      UV固化涂料有著快速固化交聯的特性,但隨之而來是在干燥過程中所形成的收縮問題較其他固化形式的涂層會更為嚴重,若要UV涂層形成穩固的基材附著牢度則變得更具有挑戰性。

      當兩物體被放在一起達到緊密的界面分子接觸,以至生成新的界面層,就生成了附著力。附著力是一種復雜的現象,涉及到“界面”的物理效應和化學反應。

      當涂料施工于基材上,并在干燥和固化的過程中附著力就生成了。這些力的大小取 決于表面和涂膜(樹脂、活性單體、助劑、溶劑等)的性質。廣義上這些力可分為二類:主價力和次價力。

      化學鍵即為主價力,具有比次價力高得多的附著力,次價力基于以氫 鍵為代表的弱得多的物理作用力。這些作用力在具有極性基團(如,羥基、羧基等)的底材上更 常見,而在非極性表面如聚乙烯(PE)、聚丙烯(PP)上則較少。

      涂料附著的確切機理目前尚未完全了解。但使兩個物體連接到一起的力由于底材和涂料通過涂料擴散生成機械連接、靜電吸引或化學鍵合。根據底材表面和所用涂料的物理化學性質的不同,附著可采取以下機理的一種或幾種。

      1.機械連接理論

      這種涂層作用機制適用于當涂料施工于含有孔、洞、裂隙或空穴的底材上時,涂料能夠滲透進去。在這種情況下,涂料的作用很象木材拼合時的釘子,起機械錨定作用。

      當底材有凹槽并填滿固化的涂料時,由于機械作用,去掉涂層更加困難,這與把兩塊榫結的木塊拼在一起類似。對各種表面的儀器分析表明,涂料確實可滲透到復雜“隧道”形狀的凹槽或裂紋中,在固化硬化時,可提供機械附著。

      涂料對疏松結構基材,以及對噴砂底材的附著就屬于這種機理。

      表面的粗糙程度影響涂料和底材的界面面積。因為去除涂層所需的力與幾何面積有關,而使涂層附著于底材上的力與實際的界面接觸面積有關。

      隨著表面積增大,去除涂層的困難增加,這通??赏ㄟ^機械打磨方法提供粗糙表面來實現。實際的界面接觸面積一般比幾何面積大好幾倍。

      通過噴砂或填料使表面積增加,結果附著力增加,

      只有當涂料完全滲透到不規則表面處,提高表面粗糙度才有利,若不能完全滲入,則 涂料與表面的接觸會比相應的幾何面積還小,并且在涂料和底材間留有空隙,空隙中駐留的氣泡會導致水汽的聚積,最終導致附著力的下降或徹底散失。

      通過對已固化的涂層進行打磨處理,可改進層間附著力(如UV木器涂料中), 特別是在底漆/清漆體系中,要求清漆平滑、光亮且表面能低,因此第二層清漆的附著有一定的困難。

      這一問題當涂料以光固化方式固化時變得更為嚴重,在此情況下,對該表面進行輕度打磨,附著力可顯著提高。

      雖然表面粗糙化能提高附著力,但必須注意避免深而尖的形狀,由于粗糙化生成的砂痕或尖峰會導致透影(看到底材),在大多數情況下并不希望這樣;同時也容易形成不均一的涂層,生成應力集中點,從而導致附著力降低。

      只要涂膜稍具流動性,涂膜收縮,厚度不均勻以及三維尺寸的變化就很少會生成不可釋放應力,但隨著粘度和涂層剛性的增加,涂膜對底材的附著力逐漸形成的過程中會生成大量的應力,并殘留于干漆膜中。

      尤其在涂膜出現厚度不均一涂層中,具有很高的內部應力,在實際應用時,極有可能會超過涂膜的應力承受能力,導致裂紋、剝落或其他附著降低的情況。

      2.化學鍵理論

      在界面間可能形成共價鍵,且在光固化和熱固化的性涂料中更有可能發生,這一類連結最強且耐久性最佳,但這要求相互反應的化學基團牢牢結合在底材和涂層中。因為界面層很薄, 界面上的化學鍵很難檢測到。

      然而,如下面所討論的,確實發生了界面鍵合,從而大大提高了粘結強度。有些表面,如已涂過的表面、木材、復合物和塑料,會有各種各樣的化學官能團,在合適的條件下,可和涂層材料形成化學鍵。

      硅氧烷偶聯劑廣泛用于各類涂料附著力的解決過程中,可用作底漆或一體化混合物以促進涂層對無機底材、金屬和塑料的附著力。

      在實際應用時,它可與基材表面的羥基,或者也可能與其他金屬氧化物形成強的醚鍵 。這類化學鍵合可發生在玻璃、陶瓷及一些金屬底材表面的金屬氫氧化物。

      含有羥基和羧基的UV涂料傾向于和含有類似基團的底材更牢固地附著,基材上殘留的基團極易與它們進行反應,從而把涂層和底材咬合在一起,這類化學反應的發生大多數情況下出現在涂膜潤濕完全的前提下,濕膜侵蝕底材后形成PIN界面,在涂膜干燥后,極性基團之間相互咬合形成鞏固。

      化學鍵合的形成在高溫下會更加容易進行,同時,這類附著力形成的牢度遠大于其他理論的方式。

      3.靜電理論

      涂層和基材表面均帶有殘余電荷,散布于體系中,這些電荷的相互作用能提高一些附著力。靜電力主要是色散力和來源于永久偶極子的相互作用力。

      含有永久偶極子物質的分子間的吸引力由一個分子的正電區和另一分子的負電區的相互作用引起。

      涂料潤濕固體表面的程度通過接觸角測定誘導偶極子間的吸引力,稱為色散力,是范德華力的一種,也對附著力有所貢獻,對某些底材/涂料體系,這些力提供了涂料和底材間的大部分吸引力。

      應該注意到這些相互作用只是短程相互作用。因為當距離超過0.5納米(5埃)時,這些力的作用明顯下降,所以涂層和底材的密切接觸是必要的。

      4.擴散理論

      當涂料和底材這兩相通過潤濕達到分子接觸時,根據材料的性質和固化條件的不同,大分子上的某些片段會向界面另一邊進行不同程度的擴散。

      這種現象需經兩步完成,即潤濕之后鏈段穿過界面相互擴散形成交錯網狀結構。

      因為長鏈性質不同和擴散系數較低,非相似聚合物通常不兼容,因此,完整的大分子穿過界面擴散是不可能的。

      然而,理論和實驗資料表明,局部鏈段擴散很容易發生,涂料的擴散也從接觸時間、固化溫度和分子結構(分子量、分子鏈柔性、側鏈基團、極性、雙鍵和物理兼容性)的影響間接得到證實。

      直接的證據則包括擴散系數的測定、電鏡對界面結構的觀察、輻射熱致發光技術和光學顯微鏡。

      顯然,這種擴散最易發生在諸如工程塑料的基材上,因為分子間自由體積較大,且與金屬及玻璃等相比分子間距離大得多。

    在線客服系統 拍国产乱人伦偷精品视频,九九久久精品国产av片国产,在线观看影视无码少妇,露脸国产精品自产拍在线观看
  • <dd id="6umys"><source id="6umys"></source></dd>
  • <nav id="6umys"></nav><center id="6umys"><table id="6umys"></table></center>